Warning

This version of the documentation is NOT an official release. You are looking at ‘latest’, which is in active and ongoing development. You can change versions on the bottom left of the screen.

iaf_cond_exp_sfa_rr – Conductance based leaky integrate-and-fire model with spike-frequency adaptation and relative refractory mechanisms

Description

iaf_cond_exp_sfa_rr is an implementation of a spiking neuron using integrate-and-fire dynamics with conductance-based synapses, with additional spike-frequency adaptation and relative refractory mechanisms as described in 2, page 166.

Incoming spike events induce a postsynaptic change of conductance modelled by an exponential function. The exponential function is normalized such that an event of weight 1.0 results in a peak current of 1 nS.

Outgoing spike events induce a change of the adaptation and relative refractory conductances by q_sfa and q_rr, respectively. Otherwise these conductances decay exponentially with time constants tau_sfa and tau_rr, respectively.

Parameters

The following parameters can be set in the status dictionary.

V_m

mV

Membrane potential

E_L

mV

Leak reversal potential

C_m

pF

Capacity of the membrane

t_ref

ms

Duration of refractory period

V_th

mV

Spike threshold

V_reset

mV

Reset potential of the membrane

E_ex

mV

Excitatory reversal potential

E_in

mV

Inhibitory reversal potential

g_L

nS

Leak conductance

tau_syn_ex

ms

Exponential decay time constant of excitatory synaptic conductance kernel

tau_syn_in

ms

Exponential decay time constant of inhibitory synaptic conductance kernel

q_sfa

nS

Outgoing spike activated quantal spike-frequency adaptation conductance increase in nS

q_rr

nS

Outgoing spike activated quantal relative refractory conductance increase in nS

tau_sfa

ms

Time constant of spike-frequency adaptation in ms

tau_rr

ms

Time constant of the relative refractory mechanism in ms

E_sfa

mV

Spike-frequency adaptation conductance reversal potential in mV

E_rr

mV

Relative refractory mechanism conductance reversal potential in mV

I_e

pA

Constant input current

Sends

SpikeEvent

Receives

SpikeEvent, CurrentEvent, DataLoggingRequest

References

1

Meffin H, Burkitt AN, Grayden DB (2004). An analytical model for the large, fluctuating synaptic conductance state typical of neocortical neurons in vivo. Journal of Computational Neuroscience, 16:159-175. DOI: https://doi.org/10.1023/B:JCNS.0000014108.03012.81

2

Dayan P, Abbott LF (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press. https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3006127