Warning

This version of the documentation is NOT an official release. You are looking at ‘latest’, which is in active and ongoing development. You can change versions on the bottom left of the screen.

iaf_cond_exp – Simple conductance based leaky integrate-and-fire neuron model

Description

iaf_cond_exp is an implementation of a spiking neuron using IAF dynamics with conductance-based synapses. Incoming spike events induce a postsynaptic change of conductance modelled by an exponential function. The exponential function is normalized such that an event of weight 1.0 results in a peak conductance of 1 nS.

Parameters

The following parameters can be set in the status dictionary.

V_m

mV

Membrane potential

E_L

mV

Leak reversal potential

C_m

pF

Capacity of the membrane

t_ref

ms

Duration of refractory period

V_th

mV

Spike threshold

V_reset

mV

Reset potential of the membrane

E_ex

mV

Excitatory reversal potential

E_in

mV

Inhibitory reversal potential

g_L

nS

Leak conductance

tau_syn_ex

ms

Exponential decay time constant of excitatory synaptic conductance kernel

tau_syn_in

ms

Exponential decay time constant of inhibitory synaptic conductance kernel

I_e

pA

Constant input current

Sends

SpikeEvent

Receives

SpikeEvent, CurrentEvent, DataLoggingRequest

References

1

Meffin H, Burkitt AN, Grayden DB (2004). An analytical model for the large, fluctuating synaptic conductance state typical of neocortical neurons in vivo. Journal of Computational Neuroscience, 16:159-175. DOI: https://doi.org/10.1023/B:JCNS.0000014108.03012.81