Weight adaptation according to the Urbanczik-Senn plasticity


Run this example as a Jupyter notebook:

See our guide for more information and troubleshooting.


This script demonstrates the learning in a compartmental neuron where the dendritic synapses adapt their weight according to the plasticity rule by Urbanczik and Senn [1]. In this simple setup, a spike pattern of 200 poisson spike trains is repeatedly presented to a neuron that is composed of one somatic and one dendritic compartment. At the same time, the somatic conductances are activated to produce a time-varying matching potential. After the learning, this signal is then reproduced by the membrane potential of the neuron. This script produces Fig. 1B in [1] but uses standard units instead of the unitless quantities used in the paper.

References

import nest
import numpy as np
from matplotlib import pyplot as plt


def g_inh(amplitude, t_start, t_end):
    """
    returns weights for the spike generator that drives the inhibitory
    somatic conductance.
    """
    return lambda t: np.piecewise(t, [(t >= t_start) & (t < t_end)], [amplitude, 0.0])


def g_exc(amplitude, freq, offset, t_start, t_end):
    """
    returns weights for the spike generator that drives the excitatory
    somatic conductance.
    """
    return lambda t: np.piecewise(
        t, [(t >= t_start) & (t < t_end)], [lambda t: amplitude * np.sin(freq * t) + offset, 0.0]
    )


def matching_potential(g_E, g_I, nrn_params):
    """
    returns the matching potential as a function of the somatic conductances.
    """
    E_E = nrn_params["soma"]["E_ex"]
    E_I = nrn_params["soma"]["E_in"]
    return (g_E * E_E + g_I * E_I) / (g_E + g_I)


def V_w_star(V_w, nrn_params):
    """
    returns the dendritic prediction of the somatic membrane potential.
    """
    g_D = nrn_params["g_sp"]
    g_L = nrn_params["soma"]["g_L"]
    E_L = nrn_params["soma"]["E_L"]
    return (g_L * E_L + g_D * V_w) / (g_L + g_D)


def phi(U, nrn_params):
    """
    rate function of the soma
    """
    phi_max = nrn_params["phi_max"]
    k = nrn_params["rate_slope"]
    beta = nrn_params["beta"]
    theta = nrn_params["theta"]
    return phi_max / (1.0 + k * np.exp(beta * (theta - U)))


def h(U, nrn_params):
    """
    derivative of the rate function phi
    """
    k = nrn_params["rate_slope"]
    beta = nrn_params["beta"]
    theta = nrn_params["theta"]
    return 15.0 * beta / (1.0 + np.exp(-beta * (theta - U)) / k)


# simulation params
n_pattern_rep = 100  # number of repetitions of the spike pattern
pattern_duration = 200.0
t_start = 2.0 * pattern_duration
t_end = n_pattern_rep * pattern_duration + t_start
simulation_time = t_end + 2.0 * pattern_duration
n_rep_total = int(np.around(simulation_time / pattern_duration))
resolution = 0.1
nest.resolution = resolution

# neuron parameters
nrn_model = "pp_cond_exp_mc_urbanczik"
nrn_params = {
    "t_ref": 3.0,  # refractory period
    "g_sp": 600.0,  # soma-to-dendritic coupling conductance
    "soma": {
        "V_m": -70.0,  # initial value of V_m
        "C_m": 300.0,  # capacitance of membrane
        "E_L": -70.0,  # resting potential
        "g_L": 30.0,  # somatic leak conductance
        "E_ex": 0.0,  # resting potential for exc input
        "E_in": -75.0,  # resting potential for inh input
        "tau_syn_ex": 3.0,  # time constant of exc conductance
        "tau_syn_in": 3.0,  # time constant of inh conductance
    },
    "dendritic": {
        "V_m": -70.0,  # initial value of V_m
        "C_m": 300.0,  # capacitance of membrane
        "E_L": -70.0,  # resting potential
        "g_L": 30.0,  # dendritic leak conductance
        "tau_syn_ex": 3.0,  # time constant of exc input current
        "tau_syn_in": 3.0,  # time constant of inh input current
    },
    # parameters of rate function
    "phi_max": 0.15,  # max rate
    "rate_slope": 0.5,  # called 'k' in the paper
    "beta": 1.0 / 3.0,
    "theta": -55.0,
}

# synapse params
syns = nest.GetDefaults(nrn_model)["receptor_types"]
init_w = 0.3 * nrn_params["dendritic"]["C_m"]
syn_params = {
    "synapse_model": "urbanczik_synapse_wr",
    "receptor_type": syns["dendritic_exc"],
    "tau_Delta": 100.0,  # time constant of low pass filtering of the weight change
    "eta": 0.17,  # learning rate
    "weight": init_w,
    "Wmax": 4.5 * nrn_params["dendritic"]["C_m"],
    "delay": resolution,
}

"""
# in case you want to use the unitless quantities as in [1]:

# neuron params:

nrn_model = 'pp_cond_exp_mc_urbanczik'
nrn_params = {
    't_ref': 3.0,
    'g_sp': 2.0,
    'soma': {
        'V_m': 0.0,
        'C_m': 1.0,
        'E_L': 0.0,
        'g_L': 0.1,
        'E_ex': 14.0 / 3.0,
        'E_in': -1.0 / 3.0,
        'tau_syn_ex': 3.0,
        'tau_syn_in': 3.0,
    },
    'dendritic': {
        'V_m': 0.0,
        'C_m': 1.0,
        'E_L': 0.0,
        'g_L': 0.1,
        'tau_syn_ex': 3.0,
        'tau_syn_in': 3.0,
    },
    # parameters of rate function
    'phi_max': 0.15,
    'rate_slope': 0.5,
    'beta': 5.0,
    'theta': 1.0,
}

# synapse params:

syns = nest.GetDefaults(nrn_model)['receptor_types']
init_w = 0.2*nrn_params['dendritic']['g_L']
syn_params = {
    'synapse_model': 'urbanczik_synapse_wr',
    'receptor_type': syns['dendritic_exc'],
    'tau_Delta': 100.0,
    'eta': 0.0003 / (15.0*15.0*nrn_params['dendritic']['C_m']),
    'weight': init_w,
    'Wmax': 3.0*nrn_params['dendritic']['g_L'],
    'delay': resolution,
}
"""

# somatic input
ampl_exc = 0.016 * nrn_params["dendritic"]["C_m"]
offset = 0.018 * nrn_params["dendritic"]["C_m"]
ampl_inh = 0.06 * nrn_params["dendritic"]["C_m"]
freq = 2.0 / pattern_duration
soma_exc_inp = g_exc(ampl_exc, 2.0 * np.pi * freq, offset, t_start, t_end)
soma_inh_inp = g_inh(ampl_inh, t_start, t_end)

# dendritic input
# create spike pattern by recording the spikes of a simulation of n_pg
# poisson generators. The recorded spike times are then given to spike
# generators.
n_pg = 200  # number of poisson generators
p_rate = 10.0  # rate in Hz

pgs = nest.Create("poisson_generator", n=n_pg, params={"rate": p_rate})

prrt_nrns_pg = nest.Create("parrot_neuron", n_pg)

nest.Connect(pgs, prrt_nrns_pg, {"rule": "one_to_one"})

sr = nest.Create("spike_recorder", n_pg)
nest.Connect(prrt_nrns_pg, sr, {"rule": "one_to_one"})

nest.Simulate(pattern_duration)
t_srs = [ssr.get("events", "times") for ssr in sr]

nest.ResetKernel()
nest.resolution = resolution

"""
neuron and devices
"""
nrn = nest.Create(nrn_model, params=nrn_params)

# poisson generators are connected to parrot neurons which are
# connected to the mc neuron
prrt_nrns = nest.Create("parrot_neuron", n_pg)

# excitatory input to the soma
spike_times_soma_inp = np.arange(resolution, simulation_time, resolution)
sg_soma_exc = nest.Create(
    "spike_generator", params={"spike_times": spike_times_soma_inp, "spike_weights": soma_exc_inp(spike_times_soma_inp)}
)
# inhibitory input to the soma
sg_soma_inh = nest.Create(
    "spike_generator", params={"spike_times": spike_times_soma_inp, "spike_weights": soma_inh_inp(spike_times_soma_inp)}
)

# excitatory input to the dendrite
sg_prox = nest.Create("spike_generator", n=n_pg)

# for recording all parameters of the Urbanczik neuron
rqs = nest.GetDefaults(nrn_model)["recordables"]
mm = nest.Create("multimeter", params={"record_from": rqs, "interval": 0.1})

# for recoding the synaptic weights of the Urbanczik synapses
wr = nest.Create("weight_recorder")

# for recording the spiking of the soma
sr_soma = nest.Create("spike_recorder")


# create connections
nest.Connect(sg_prox, prrt_nrns, {"rule": "one_to_one"})
nest.CopyModel("urbanczik_synapse", "urbanczik_synapse_wr", {"weight_recorder": wr[0]})
nest.Connect(prrt_nrns, nrn, syn_spec=syn_params)
nest.Connect(mm, nrn, syn_spec={"delay": 0.1})
nest.Connect(
    sg_soma_exc, nrn, syn_spec={"receptor_type": syns["soma_exc"], "weight": 10.0 * resolution, "delay": resolution}
)
nest.Connect(
    sg_soma_inh, nrn, syn_spec={"receptor_type": syns["soma_inh"], "weight": 10.0 * resolution, "delay": resolution}
)
nest.Connect(nrn, sr_soma)

# simulation divided into intervals of the pattern duration
for i in np.arange(n_rep_total):
    # Set the spike times of the pattern for each spike generator
    for sg, t_sp in zip(sg_prox, t_srs):
        nest.SetStatus(sg, {"spike_times": np.array(t_sp) + i * pattern_duration})

    nest.Simulate(pattern_duration)


# read out devices

# multimeter
mm_events = mm.events
t = mm_events["times"]
V_s = mm_events["V_m.s"]
V_d = mm_events["V_m.p"]
V_d_star = V_w_star(V_d, nrn_params)
g_in = mm_events["g_in.s"]
g_ex = mm_events["g_ex.s"]
I_ex = mm_events["I_ex.p"]
I_in = mm_events["I_in.p"]
U_M = matching_potential(g_ex, g_in, nrn_params)

# weight recorder
wr_events = wr.events
senders = wr_events["senders"]
targets = wr_events["targets"]
weights = wr_events["weights"]
times = wr_events["times"]

# spike recorder
spike_times_soma = sr_soma.get("events", "times")


# plot results
fs = 22
lw = 2.5
fig1, (axA, axB, axC, axD) = plt.subplots(4, 1, sharex=True)

# membrane potentials and matching potential
axA.plot(t, V_s, lw=lw, label=r"$U$ (soma)", color="darkblue")
axA.plot(t, V_d, lw=lw, label=r"$V_W$ (dendrit)", color="deepskyblue")
axA.plot(t, V_d_star, lw=lw, label=r"$V_W^\ast$ (dendrit)", color="b", ls="--")
axA.plot(t, U_M, lw=lw, label=r"$U_M$ (soma)", color="r", ls="-")
axA.set_ylabel("membrane pot [mV]", fontsize=fs)
axA.legend(fontsize=fs)

# somatic conductances
axB.plot(t, g_in, lw=lw, label=r"$g_I$", color="r")
axB.plot(t, g_ex, lw=lw, label=r"$g_E$", color="coral")
axB.set_ylabel("somatic cond", fontsize=fs)
axB.legend(fontsize=fs)

# dendritic currents
axC.plot(t, I_ex, lw=lw, label=r"$I_ex$", color="r")
axC.plot(t, I_in, lw=lw, label=r"$I_in$", color="coral")
axC.set_ylabel("dend current", fontsize=fs)
axC.legend(fontsize=fs)

# rates
axD.plot(t, phi(V_s, nrn_params), lw=lw, label=r"$\phi(U)$", color="darkblue")
axD.plot(t, phi(V_d, nrn_params), lw=lw, label=r"$\phi(V_W)$", color="deepskyblue")
axD.plot(t, phi(V_d_star, nrn_params), lw=lw, label=r"$\phi(V_W^\ast)$", color="b", ls="--")
axD.plot(t, h(V_d_star, nrn_params), lw=lw, label=r"$h(V_W^\ast)$", color="g", ls="--")
axD.plot(
    t, phi(V_s, nrn_params) - phi(V_d_star, nrn_params), lw=lw, label=r"$\phi(U) - \phi(V_W^\ast)$", color="r", ls="-"
)
axD.plot(spike_times_soma, 0.0 * np.ones(len(spike_times_soma)), "s", color="k", markersize=2)
axD.legend(fontsize=fs)

# synaptic weights
fig2, axA = plt.subplots(1, 1)
for i in np.arange(2, 200, 10):
    index = np.intersect1d(np.where(senders == i), np.where(targets == 1))
    if not len(index) == 0:
        axA.step(times[index], weights[index], label="pg_{}".format(i - 2), lw=lw)

axA.set_title("Synaptic weights of Urbanczik synapses")
axA.set_xlabel("time [ms]", fontsize=fs)
axA.set_ylabel("weight", fontsize=fs)
axA.legend(fontsize=fs - 4)
plt.show()

Gallery generated by Sphinx-Gallery