ht_neuron – Neuron model after Hill & Tononi (2005) =================================================== Description +++++++++++ This model neuron implements a slightly modified version of the neuron model described in [1]_. The most important properties are: - Integrate-and-fire with threshold adaptive threshold. - Repolarizing potassium current instead of hard reset. - AMPA, NMDA, GABA_A, and GABA_B conductance-based synapses with beta-function (difference of exponentials) time course. - Voltage-dependent NMDA with instantaneous or two-stage unblocking [1]_, [2]_. - Intrinsic currents I_h, I_T, I_Na(p), and I_KNa. - Synaptic "minis" are not implemented. For implementation details see: - `HillTononi_model <../model_details/HillTononiModels.ipynb>`_ For examples, see: - :doc:`../auto_examples/intrinsic_currents_spiking` - :doc:`../auto_examples/intrinsic_currents_subthreshold` For an example network model using ``ht_neuron`` (based on [1]_), see: - `Multiarea Hill-Tononi thalamocortical network model `_ Parameters ++++++++++ =============== ======= ========================================================= V_m mV Membrane potential tau_m ms Membrane time constant applying to all currents except repolarizing K-current (see [1]_, p 1677) t_ref ms Refractory time and duration of post-spike repolarizing potassium current (t_spike in [1]_) tau_spike ms Membrane time constant for post-spike repolarizing potassium current voltage_clamp boolean If true, clamp voltage to value at beginning of simulation (default: false, mainly for testing) theta mV Threshold theta_eq mV Equilibrium value tau_theta ms Time constant g_KL nS Conductance for potassium leak current E_K mV Reversal potential for potassium leak currents g_NaL nS Conductance for sodium leak currents E_Na mV Reversal potential for Na leak currents tau_D_KNa ms Relaxation time constant for I_KNa receptor_types Dictionary mapping synapse names to ports on neuron model recordables List of recordable quantities =============== ======= ========================================================= +------------------------------------------------------------+ |{E_rev,g_peak,tau_rise,tau_decay}_{AMPA,NMDA,GABA_A,GABA_B} | +------------------------------------------------------------+ | Reversal potentials, peak conductances and time constants | | for synapses (tau_rise/tau_decay correspond to tau_1/tau_2 | | in the paper) | +------------------------------------------------------------+ +------------------------+------------------------------------------------+ |V_act_NMDA, S_act_NMDA, | Parameters for voltage dependence of NMDA- | |tau_Mg_{fast, slow}_NMDA| conductance, see above | +------------------------+------------------------------------------------+ ============================ ================================================= instant_unblock_NMDA Instantaneous NMDA unblocking (default: false) {E_rev,g_peak}_{h,T,NaP,KNa} Reversal potential and peak conductance for intrinsic currents {N}_{T,NaP} Exponent activation term m_inf, corresponding to number of activation particles equilibrate If given and true, time-dependent activation and inactivation state variables (h, m) of intrinsic currents and NMDA channels are set to their equilibrium values during this SetStatus call; otherwise they retain their present values. ============================ ================================================= .. note:: Conductances are unitless in this model and currents are in mV. Sends +++++ SpikeEvent Receives ++++++++ SpikeEvent, CurrentEvent, DataLoggingRequest References ++++++++++ .. [1] Hill S, Tononi G (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology. 93:1671-1698. DOI: https://doi.org/10.1152/jn.00915.2004 .. [2] Vargas-Caballero M, Robinson HPC (2003). A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. Journal of Neurophysiology 89:2778-2783. DOI: https://doi.org/10.1152/jn.01038.2002 See also ++++++++ :doc:`Neuron `, :doc:`Hill-Tononi Plasticity `