Warning

This version of the documentation is NOT an official release. You are looking at ‘latest’, which is in active and ongoing development. You can change versions on the bottom left of the screen.

hh_psc_alpha_clopath – Hodgkin-Huxley neuron model with support for Clopath plasticity

Description

hh_psc_alpha_clopath is an implementation of a spiking neuron using the Hodgkin-Huxley formalism and that is capable of connecting to a Clopath synapse.

(1) Postsynaptic currents Incoming spike events induce a postsynaptic change of current modelled by an alpha function. The alpha function is normalized such that an event of weight 1.0 results in a peak current of 1 pA.

(2) Spike Detection Spike detection is done by a combined threshold-and-local-maximum search: if there is a local maximum above a certain threshold of the membrane potential, it is considered a spike.

Parameters

The following parameters can be set in the status dictionary.

Dynamic state variables

V_m

mV

Membrane potential

u_bar_plus

mV

Low-pass filtered Membrane potential

u_bar_minus

mV

Low-pass filtered Membrane potential

u_bar_bar

mV

Low-pass filtered u_bar_minus

Membrane Parameters

E_L

mV

Leak reversal potential

C_m

pF

Capacity of the membrane

g_L

nS

Leak conductance

tau_ex

ms

Rise time of the excitatory synaptic alpha function

tau_in

ms

Rise time of the inhibitory synaptic alpha function

E_Na

mV

Sodium reversal potential

g_Na

nS

Sodium peak conductance

E_K

mV

Potassium reversal potential

g_K

nS

Potassium peak conductance

Act_m

real

Activation variable m

Inact_h

real

Inactivation variable h

Act_n

real

Activation variable n

I_e

pA

External input current

Clopath rule parameters

A_LTD

1/mV

Amplitude of depression

A_LTP

1/mV^2

Amplitude of facilitation

theta_plus

mV

Threshold for u

theta_minus

mV

Threshold for u_bar_[plus/minus]

A_LTD_const

boolean

Flag that indicates whether A_LTD_ should be constant (true, default) or multiplied by u_bar_bar^2 / u_ref_squared (false).

delay_u_bars

real

Delay with which u_bar_[plus/minus] are processed to compute the synaptic weights.

U_ref_squared

real

Reference value for u_bar_bar_^2.

Problems/Todo

  • better spike detection

  • initial wavelet/spike at simulation onset

References

1

Gerstner W and Kistler WM (2002). Spiking neuron models: Single neurons, populations, plasticity. New York: Cambridge university press.

2

Dayan P and Abbott L (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press. https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3006127

3

Hodgkin AL and Huxley A F (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117. DOI: https://doi.org/10.1113/jphysiol.1952.sp004764

4

Clopath et al. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neuroscience 13(3):344-352. DOI: https://doi.org/10.1038/nn.2479

5

Clopath and Gerstner (2010). Voltage and spike timing interact in STDP – a unified model. Frontiers in Synaptic Neuroscience. 2:25 DOI: https://doi.org/10.3389/fnsyn.2010.00025

6

Voltage-based STDP synapse (Clopath et al. 2010) connected to a Hodgkin-Huxley neuron on ModelDB: https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=144566&file =%2fmodeldb_package%2fstdp_cc.mod

Sends

SpikeEvent

Receives

SpikeEvent, CurrentEvent, DataLoggingRequest