This version of the documentation is NOT an official release. You are looking at ‘latest’, which is in active and ongoing development. You can change versions on the bottom left of the screen.

NEST spatial example

Create two populations of iaf_psc_alpha neurons on a 30x30 grid with edge_wrap, connect with circular mask, flat probability, visualize.

BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB

import matplotlib.pyplot as plt
import numpy as np
import nest


pos = nest.spatial.grid(shape=[30, 30], extent=[3., 3.], edge_wrap=True)

create and connect two populations

a = nest.Create('iaf_psc_alpha', positions=pos)
b = nest.Create('iaf_psc_alpha', positions=pos)

cdict = {'rule': 'pairwise_bernoulli',
         'p': 0.5,
         'mask': {'circular': {'radius': 0.5}}}

nest.Connect(a, b,
             syn_spec={'weight': nest.random.uniform(0.5, 2.)})


plot targets of neurons in different grid locations

# first, clear existing figure, get current figure
fig = plt.gcf()

# plot targets of two source neurons into same figure, with mask
for src_index in [30 * 15 + 15, 0]:
    # obtain node id for center
    src = a[src_index:src_index + 1]
    nest.PlotTargets(src, b, mask=cdict['mask'], fig=fig)

# beautify
plt.axes().set_xticks(np.arange(-1.5, 1.55, 0.5))
plt.axes().set_yticks(np.arange(-1.5, 1.55, 0.5))
plt.axis([-2.0, 2.0, -2.0, 2.0])
plt.axes().set_aspect('equal', 'box')
plt.title('Connection targets')


# plt.savefig('connex_ew.pdf')

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery