Warning

This version of the documentation is NOT an official release. You are looking at ‘latest’, which is in active and ongoing development. You can change versions on the bottom left of the screen.

# Correlospinmatrix detector example¶

This scripts simulates two connected binary neurons, similar as in 1. It measures and plots the auto- and cross covariance functions of the individual neurons and between them, repsectively.

## References¶

1

Ginzburg and Sompolinsky (1994). Theory of correlations in stochastic neural networks. 50(4) p. 3175. Fig. 1.

import matplotlib.pyplot as plt
import nest
import numpy as np

m_x = 0.5
tau_m = 10.
h = 0.1
T = 1000000.
tau_max = 100.

csd = nest.Create("correlospinmatrix_detector")
csd.set(N_channels=2, tau_max=tau_max, Tstart=tau_max, delta_tau=h)

n1 = nest.Create("ginzburg_neuron")
n1.set(theta=0.0, tau_m=tau_m, c_1=0.0, c_2=2. * m_x, c_3=1.0)

n2 = nest.Create("mcculloch_pitts_neuron")
n2.set(theta=0.5, tau_m=tau_m)

nest.Connect(n1, n2, syn_spec={"weight": 1.0})

nest.Connect(n1, csd, syn_spec={"receptor_type": 0})
nest.Connect(n2, csd, syn_spec={"receptor_type": 1})

nest.Simulate(T)

count_covariance = csd.count_covariance

mean_activities = np.zeros(2, dtype=float)
for i in range(2):
mean_activities[i] = count_covariance[i][i][int(tau_max / h)] * (h / T)

print('mean activities =', mean_activities)

covariance_matrix = np.zeros((2, 2, int(2 * tau_max / h) + 1), dtype=float)
for i in range(2):
for j in range(2):
covariance_matrix[i, j] = count_covariance[i][j] * (h / T) - mean_activities[i] * mean_activities[j]

ts = np.arange(-tau_max, tau_max + h, h)

plt.title("auto- and cross covariance functions")

plt.plot(ts, covariance_matrix[0, 1], 'r', label=r"$c_{12}$")
plt.plot(ts, covariance_matrix[1, 0], 'b', label=r"$c_{21}$")
plt.plot(ts, covariance_matrix[0, 0], 'g', label=r"$c_{11}$")
plt.plot(ts, covariance_matrix[1, 1], 'y', label=r"$c_{22}$")
plt.xlabel(r"time $t \; \mathrm{ms}$")
plt.ylabel(r"$c$")
plt.legend()

plt.show()


Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery