# Correlospinmatrix detector example¶

This scripts simulates two connected binary neurons, similar as in 1. It measures and plots the auto- and cross covariance functions of the individual neurons and between them, repsectively.

## References¶

1

Ginzburg and Sompolinsky (1994). Theory of correlations in stochastic neural netoworks. 50(4) p. 3175. Fig. 1.

import pylab as pl
import nest
import numpy as np

m_x = 0.5
tau_m = 10.
h = 0.1
T = 1000000.
tau_max = 100.

csd = nest.Create("correlospinmatrix_detector")
nest.SetStatus(csd, {"N_channels": 2, "tau_max": tau_max, "Tstart": tau_max,
"delta_tau": h})

nest.SetDefaults('ginzburg_neuron', {'theta': 0.0, 'tau_m': tau_m,
'c_1': 0.0, 'c_2': 2. * m_x, 'c_3': 1.0})
n1 = nest.Create("ginzburg_neuron")

nest.SetDefaults("mcculloch_pitts_neuron", {'theta': 0.5, 'tau_m': tau_m})
n2 = nest.Create("mcculloch_pitts_neuron")

nest.Connect(n1, n2, syn_spec={"weight": 1.0})

nest.Connect(n1, csd, syn_spec={"receptor_type": 0})
nest.Connect(n2, csd, syn_spec={"receptor_type": 1})

nest.Simulate(T)

stat = nest.GetStatus(csd)[0]

c = stat["count_covariance"]

m = np.zeros(2, dtype=float)
for i in range(2):
m[i] = c[i][i][int(tau_max / h)] * (h / T)

print('mean activities =', m)

cmat = np.zeros((2, 2, int(2 * tau_max / h) + 1), dtype=float)
for i in range(2):
for j in range(2):
cmat[i, j] = c[i][j] * (h / T) - m[i] * m[j]

ts = np.arange(-tau_max, tau_max + h, h)

pl.title("auto- and cross covariance functions")

pl.plot(ts, cmat[0, 1], 'r', label=r"$c_{12}$")
pl.plot(ts, cmat[1, 0], 'b', label=r"$c_{21}$")
pl.plot(ts, cmat[0, 0], 'g', label=r"$c_{11}$")
pl.plot(ts, cmat[1, 1], 'y', label=r"$c_{22}$")
pl.xlabel("time $t \; \mathrm{ms}$")
pl.ylabel(r"$c$")
pl.legend()

pl.show()


Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery