Note
Go to the end to download the full example code.
Spatial networks: Gaussian probabilistic kernelΒΆ
Run this example as a Jupyter notebook:
See our guide for more information and troubleshooting.
Create two populations on a 30x30 grid and connect them using a Gaussian probabilistic kernel BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB
import matplotlib.pyplot as plt
import nest
import numpy as np
nest.ResetKernel()
create two test layers
pos = nest.spatial.grid(shape=[30, 30], extent=[3.0, 3.0])
create and connect two populations
a = nest.Create("iaf_psc_alpha", positions=pos)
b = nest.Create("iaf_psc_alpha", positions=pos)
cdict = {
"rule": "pairwise_bernoulli",
"p": nest.spatial_distributions.gaussian(nest.spatial.distance, std=0.5),
"mask": {"circular": {"radius": 3.0}},
}
nest.Connect(a, b, cdict)
plot targets of neurons in different grid locations
plot targets of two source neurons into same figure, with mask use different colors
for src_index, color, cmap in [(30 * 15 + 15, "blue", "Blues"), (0, "green", "Greens")]:
# obtain node id for center
src = a[src_index : src_index + 1]
fig = plt.figure()
nest.PlotTargets(
src,
b,
mask=cdict["mask"],
probability_parameter=cdict["p"],
src_color=color,
tgt_color=color,
mask_color=color,
probability_cmap=cmap,
src_size=100,
fig=fig,
)
# beautify
plt.axes().set_xticks(np.arange(-1.5, 1.55, 0.5))
plt.axes().set_yticks(np.arange(-1.5, 1.55, 0.5))
plt.grid(True)
plt.axis([-2.0, 2.0, -2.0, 2.0])
plt.axes().set_aspect("equal", "box")
plt.title("Connection targets, Gaussian kernel")
plt.show()
# plt.savefig('gaussex.pdf')