Note
Go to the end to download the full example code
IF curve exampleΒΆ
Run this example as a Jupyter notebook:
![]()
See our guide for more information and troubleshooting.
This example illustrates how to measure the I-F curve of a neuron. The program creates a small group of neurons and injects a noisy current \(I(t) = I_mean + I_std*W(t)\) where \(W(t)\) is a white noise process. The program systematically drives the current through a series of values in the two-dimensional (I_mean, I_std) space and measures the firing rate of the neurons.
In this example, we measure the I-F curve of the adaptive exponential
integrate and fire neuron (aeif_cond_exp
), but any other neuron model that
accepts current inputs is possible. The model and its parameters are
supplied when the IF_curve object is created.
import shelve
import nest
import numpy
Here we define which model and the neuron parameters to use for measuring the transfer function.
model = "aeif_cond_exp"
params = {
"a": 4.0,
"b": 80.8,
"V_th": -50.4,
"Delta_T": 2.0,
"I_e": 0.0,
"C_m": 281.0,
"g_L": 30.0,
"V_reset": -70.6,
"tau_w": 144.0,
"t_ref": 5.0,
"V_peak": -40.0,
"E_L": -70.6,
"E_ex": 0.0,
"E_in": -70.0,
}
class IF_curve:
t_inter_trial = 200.0 # Interval between two successive measurement trials
t_sim = 1000.0 # Duration of a measurement trial
n_neurons = 100 # Number of neurons
n_threads = 4 # Nubmer of threads to run the simulation
def __init__(self, model, params=None):
self.model = model
self.params = params
self.build()
self.connect()
def build(self):
#######################################################################
# We reset NEST to delete information from previous simulations
# and adjust the number of threads.
nest.ResetKernel()
nest.local_num_threads = self.n_threads
#######################################################################
# We create neurons and devices with specified parameters.
self.neuron = nest.Create(self.model, self.n_neurons, self.params)
self.noise = nest.Create("noise_generator")
self.spike_recorder = nest.Create("spike_recorder")
def connect(self):
#######################################################################
# We connect the noisy current to the neurons and the neurons to
# the spike recorders.
nest.Connect(self.noise, self.neuron, "all_to_all")
nest.Connect(self.neuron, self.spike_recorder, "all_to_all")
def output_rate(self, mean, std):
self.build()
self.connect()
#######################################################################
# We adjust the parameters of the noise according to the current
# values.
self.noise.set(mean=mean, std=std, start=0.0, stop=1000.0, origin=0.0)
# We simulate the network and calculate the rate.
nest.Simulate(self.t_sim)
rate = self.spike_recorder.n_events * 1000.0 / (1.0 * self.n_neurons * self.t_sim)
return rate
def compute_transfer(self, i_mean=(400.0, 900.0, 50.0), i_std=(0.0, 600.0, 50.0)):
#######################################################################
# We loop through all possible combinations of `(I_mean, I_sigma)`
# and measure the output rate of the neuron.
self.i_range = numpy.arange(*i_mean)
self.std_range = numpy.arange(*i_std)
self.rate = numpy.zeros((self.i_range.size, self.std_range.size))
nest.set_verbosity("M_WARNING")
for n, i in enumerate(self.i_range):
print("I = {0}".format(i))
for m, std in enumerate(self.std_range):
self.rate[n, m] = self.output_rate(i, std)
transfer = IF_curve(model, params)
transfer.compute_transfer()
After the simulation is finished, we store the data into a file for later analysis.
with shelve.open(model + "_transfer.dat") as dat:
dat["I_mean"] = transfer.i_range
dat["I_std"] = transfer.std_range
dat["rate"] = transfer.rate